skip to main content


Search for: All records

Creators/Authors contains: "George, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We assess the suitability of potassium ferri-/ferrocyanide as an electroactive species for long-term utilization in aqueous organic redox flow batteries. A series of electrochemical and chemical characterization experiments was performed to distinguish between structural decomposition and apparent capacity fade of ferri-/ferrocyanide solutions used in the capacity-limiting side of a flow battery. Our results indicate that, in contrast with previous reports, no structural decomposition of ferri-/ferrocyanide occurs at tested pH values as high as 14 in the dark or in diffuse indoor light. Instead, an apparent capacity fade takes place due to a chemical reduction of ferricyanide to ferrocyanide, via chemical oxygen evolution reaction. We find that this parasitic process can be further exacerbated by carbon electrodes, with apparent capacity fade rates at pH 14 increasing with an increased ratio of carbon electrode surface area to ferricyanide in solution. Based on these results, we report a set of operating conditions that enables the long-duration cycling of alkaline ferri-/ferrocyanide electrolytes and demonstrate how apparent capacity fade rates can be engineered by the initial system setup. If protected from direct exposure to light, the structural stability of ferri-/ferrocyanide anions allows for their practical deployment as electroactive species in long duration energy storage applications.

     
    more » « less
  2. Organic reactants are promising candidates for long-lifetime redox flow batteries, and synthetic chemistry unlocks a wide design space for new molecules. Minimizing crossover of these molecules through ion exchange membranes is one important design consideration, but the ways in which the crossover rate depends on the structure of the crossing species remain unclear. Here, we contribute a systematic evaluation of size- and charge-based effects on dilute-solution small molecule permeability through the Nafion NR212 cation exchange membrane. We found that increasing the magnitude of charge numberzwith the same sign as membrane fixed charges, achieved here by successive sulfonation of quinone redox cores, results in more than an order of magnitude permeability reduction per sulfonate. Size-based effects, understood by comparing the Stokes radii of the quinones studied, also reduces permeability with increasing effective molecule size, but doubling the effective size of the redox reactants resulted in a permeability decrease of less than a factor of three.

     
    more » « less
  3. Abstract

    An extremely stable, energy‐dense (53.6 Ah L−1, 2 mtransferrable electrons), low crossover (permeability of <1 × 10−13 cm2 s−1using Nafion 212 (Nafion is a trademark polymer from DuPont)), and potentially inexpensive anthraquinone with 2‐2‐propionate ether anthraquinone structure (abbreviated 2‐2PEAQ) is synthesized and extensively evaluated under practically relevant conditions for use in the negolyte of an aqueous redox flow battery. 2‐2PEAQ shows a high stability with a fade rate of 0.03–0.05% per day at different applied current densities, cut‐off voltage windows, and concentrations (0.1 and 1.0 m) in both a full cell paired with a ferro/ferricyanide posolyte as well as a symmetric cell. 2‐2PEAQ is further shown to have extreme long‐term stability, losing only ≈0.01% per day when an electrochemical rejuvenation strategy is employed. From post‐mortem analysis (nuclear magnetic resonance (NMR), liquid chromatography–mass spectrometry (LC‐MS), and cyclic voltammetry (CV)) two degradation mechanisms are deduced: side chain loss and anthrone formation. 2‐2PEAQ with the ether linkages attached on carbons non‐adjacent to the central ring is found to have three times lower fade rate compared to its isomer with ether linkages on the carbon adjacent to the central quinone ring. The present study introduces a viable negolyte candidate for grid‐scale aqueous organic redox flow batteries.

     
    more » « less
  4. Abstract

    An iron complex, tris(4,4′‐bis(hydroxymethyl)‐2,2′‐bipyridine) iron dichloride is reported, which operates at near‐neutral pH with a redox potential of 0.985 V versus SHE. This high potential compound is employed in the posolyte of an aqueous flow battery, paired with bis(3‐trimethylammonio)propyl viologen tetrachloride in the negolyte, exhibiting an open‐circuit voltage of 1.3 V at near‐neutral pH. It demonstrates excellent cycling performance with a low temporal capacity fade rate of 0.07% per day over 35 days of cycling. The extended cycling lifetime is the result of low permeability and improved structural stability of the newly developed iron complex compared to that of the iron tris(bipyridine) complex. The combination of high redox potential and low capacity fade rate compares favorably with those of all previously demonstrated organic and organometallic aqueous posolytes. Extensive investigation into the possible degradation mechanisms, including post‐mortem chemical and electrochemical analyses, indicates that stepwise ligand dissociations of the iron complex are responsible for the reported capacity loss during cell cycling. This investigation provides unprecedented insight to guide further improvements of such metalorganic compounds for energy storage and conversion applications.

     
    more » « less
  5. Abstract

    Aqueous organic redox flow batteries are promising candidates for large‐scale energy storage. However, the design of stable and inexpensive electrolytes is challenging. Here, we report a highly stable, low redox potential, and potentially inexpensive negolyte species, sodium 3,3′,3′′,3′′′‐((9,10‐anthraquinone‐2,6‐diyl)bis(azanetriyl))tetrakis(propane‐1‐sulfonate) (2,6‐N‐TSAQ), which is synthesized in a single step from inexpensive precursors. Pairing 2,6‐N‐TSAQ with potassium ferrocyanide at pH=14 yielded a battery with the highest open‐circuit voltage, 1.14 V, of any anthraquinone‐based cell with a capacity fade rate <10 %/yr. When 2,6‐N‐TSAQ was cycled at neutral pH, it exhibited two orders of magnitude higher capacity fade rate. The great difference in anthraquinone cycling stability at different pH is interpreted in terms of the thermodynamics of the anthrone formation reaction. This work shows the great potential of organic synthetic chemistry for the development of viable flow battery electrolytes and demonstrates the remarkable performance improvements achievable with an understanding of decomposition mechanisms.

     
    more » « less